Deep inference of seabird dives from GPS-only records: performance and generalization properties

PLOS Computational Biology(2021)

Cited 6|Views7
No score
Abstract
At-sea behaviour of seabirds have received significant attention in ecology over the last decades as it is a key process in the ecology and fate of these populations. It is also, through the position of top predator that these species often occupy, a relevant and integrative indicator of the dynamics of the marine ecosystems they rely on. Seabird trajectories are recorded through the deployment of GPS, and a variety of statistical approaches have been tested to infer probable behaviours from these location data. Recently, deep learning tools have shown promising results for the segmentation and classification of animal behaviour from trajectory data. Yet, these approaches have not been widely used and investigation is still needed to identify optimal network architecture and to demonstrate their generalization properties. From a database of about 300 foraging trajectories derived from GPS data deployed simultaneously with pressure sensors for the identification of dives, this work has benchmarked deep neural network architectures trained in a supervised manner for the prediction of dives from trajectory data. It first confirms that deep learning allows better dive prediction than usual methods such as Hidden Markov Models. It also demonstrates the generalization properties of the trained networks for inferring dives distribution for seabirds from other colonies and ecosystems. In particular, convolutional networks trained on Peruvian boobies from a specific colony show great ability to predict dives of boobies from other colonies and from distinct ecosystems. We further investigate accross-species generalization using a transfer learning strategy known as ‘fine-tuning’. Starting from a convolutional network pre-trained on Guanay cormorant data reduced by two the size of the dataset needed to accurately predict dives in a tropical booby from Brazil. We believe that the networks trained in this study will provide relevant starting point for future fine-tuning works for seabird trajectory segmentation. To make easier such applications, we share online the different models we trained on the considered datasets (). Author Summary Over the last decades, the use of miniaturized electronic devices enabled the tracking of many wide-ranging animal species. The deployment of GPS has notably informed on migratory, habitat and foraging strategies of numerous seabird species. A key challenge in movement ecology is to identify specific behavioural patterns (e.g. travelling, resting, foraging) through the observed movement data. In this work, we address the inference of seabird diving behaviour from GPS data using deep learning methods. We demonstrate the performance of deep networks to accurately identify movement patterns from GPS data over state-of-the-art tools, and we illustrate their great accross-species generalization properties (i.e. the ability to generalize prediction from one seabird species to aother). Our results further supports the relevance of deep learning schemes as ‘ready-to-use’ tools which could be used by ecologists to segmentate animal trajectories on new (small) datasets, including when these datasets do not include groundtruthed labelled data for a supervised training. ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined