Oncogenic PKA signaling stabilizes MYC oncoproteins via an aurora kinase A-dependent mechanism

biorxiv(2021)

引用 1|浏览18
暂无评分
摘要
Genetic alterations that activate protein kinase A (PKA) signaling are found across many tumor types, but their downstream oncogenic mechanisms are poorly understood. We used global phosphoproteomics and kinome activity profiling to map the conserved signaling outputs driven by diverse genetic changes that activate PKA in human cancer, including melanoma and fibrolamellar carcinoma (FLC). We define two consensus networks of effectors downstream of PKA in cancer models. One is centered on RAS/MAPK components, and a second involves Aurora Kinase A (AURKA). We find that AURKA stabilizes c-MYC and n-MYC protein levels and expression programs in PKA-dependent tumor models, in part via a positive feedback loop mediated by the oncogenic kinase PIM2. This process can be suppressed by conformation-disrupting AURKA inhibitors such as CD-532. Our findings elucidate two independent mechanisms of PKA-driven tumor cell growth and offer insight into drug targets for study in FLC and other PKA-dependent malignancies. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要