Single-cell antigen-specific activation landscape of CAR T infusion product identifies determinants of CD19 positive relapse in patients with ALL

biorxiv(2021)

Cited 35|Views11
No score
Abstract
Chimeric antigen receptor-modified (CAR) T cells targeting CD19 have mediated dramatic responses in relapsed/refractory acute lymphoblastic leukemia (ALL), yet a notable number of patients have CD19-positive relapse within one year of treatment. It remains unclear if the long-term response is associated with the characteristics of CAR T cells in infusion products, hindering the identification of biomarkers to predict therapeutic outcomes prior to treatment. Herein we present 101,326 single cell transcriptomes and surface protein landscape from the CAR T infusion products of 12 pediatric ALL patients upon CAR antigen-specific stimulation in comparison with TCR-mediated activation and controls. We observed substantial heterogeneity in the antigen-specific activation states, among which a deficiency of Th2 function was associated with CD19-positive relapsed patients (median remission 9.6 months) compared with very durable responders (remission>54 months). Proteomic profiles also revealed that the frequency of early memory T cell subsets, rather than activation or co-inhibitory signatures could distinguish CD19-positive relapse. Additionally, a deficit of type 1 helper and cytotoxic effector function and an enrichment for terminally differentiated CD8+ T cells exhibiting low cytokine polyfunctionality was associated with initial non-responders. By contrast, the single-cell transcriptomic data of unstimulated or TCR-activated CAR T cells failed to predict clinical responses. In aggregate, our results dissect the landscape of CAR-specific activation states in infusion products that can identify patients who do not develop a durable response to the therapy, and unveil the molecular mechanisms that may inform strategies to boost specific T cell function to maintain long term remission. ### Competing Interest Statement R.F. has financial interest in IsoPlexis, Singleron Biotechnologies, AtlasXomics, and Bio-Techne. The interests of R.F. were reviewed and managed by Yale University Provost Office in accordance with the University conflict of interest policies.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined