Insecticide resistance characteristic of Anopheles vector species successfully controlled by deployment of pyrethroid and PBO long lasting insecticidal treated nets in Tanzania

bioRxiv (Cold Spring Harbor Laboratory)(2021)

引用 0|浏览1
暂无评分
摘要
Long lasting insecticidal nets (LLINs) are a proven tool to reduce malaria transmission, but in Africa efficacy is being reduced by pyrethroid resistance in the major vectors. A cluster randomized trial in Muleba district, Tanzania demonstrated that permethrin LLINs co-treated with piperonyl butoxide (PBO), a synergist that can block pyrethroid-metabolizing enzymes in the mosquito, had much greater efficacy than pyrethroid-only nets. Insecticide resistance profiles and underlying mechanisms were investigated in Anopheles gambiae and An. funestus from Muleba during the trial. Diagnostic dose bioassays using permethrin, together with intensity assays, suggest pyrethroid resistance that is both strong and very common, but not extreme. Transcriptomic analysis found multiple P450 genes over expressed including CYP6M2, CYP6Z3, CYP6P3, CYP6P4, CYP6AA1 and CYP9K1 in An. gambiae and CYP6N1, CYP6M7, CYP6M1 and CYP6Z3 in An. funestus . Indeed, very similar suites of P450 enzymes commonly associated with resistant populations elsewhere in Africa were detected as over expressed suggesting a convergence of mechanisms across Sub-Saharan African malaria vectors. The findings give insight into factors that may correlate with pyrethroid PBO LLIN success, broadly supporting model predictions, but revision to guidelines previously issued by the World Health Organization is warranted.
更多
查看译文
关键词
anopheles vector species,pyrethroid,insecticidal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要