A Framework for Evaluating Myocardial Stiffness Using 3D-Printed Hearts

biorxiv(2021)

引用 0|浏览3
暂无评分
摘要
MRI-driven computational modeling is increasingly used to simulate in vivo cardiac mechanical behavior and estimate subject-specific myocardial stiffness. However, in vivo validation of these estimates is exceedingly difficult due to the lack of a known ground-truth in vivo myocardial stiffness. We have developed 3D-printed heart phantoms of known myocardium-mimicking stiffness and MRI relaxation properties and incorporated the heart phantoms within a highly controlled MRI-compatible setup to simulate in vivo diastolic filling. The setup enables the acquisition of experimental data needed to evaluate myocardial stiffness using computational constitutive modeling: phantom geometry, loading pressures, boundary conditions, and filling strains. The pressure-volume relationship obtained from the phantom setup was used to calibrate an in silico model of the heart phantom undergoing simulated diastolic filling. The model estimated stiffness was compared with ground-truth stiffness obtained from uniaxial tensile testing. Ultimately, the setup is designed to enable extensive validation of MRI and FEM-based myocardial stiffness estimation frameworks. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要