Next generation vaccine platform: polymersomes as stable nanocarriers for a highly immunogenic and durable SARS-CoV-2 spike protein subunit vaccine

biorxiv(2021)

引用 2|浏览3
暂无评分
摘要
Multiple successful vaccines against SARS-CoV-2 are urgently needed to address the ongoing Covid-19 pandemic. In the present work, we describe a subunit vaccine based on the SARS-CoV-2 spike protein co-administered with CpG adjuvant. To enhance the immunogenicity of our formulation, both antigen and adjuvant were encapsulated with our proprietary artificial cell membrane (ACM) polymersome technology. Structurally, ACM polymersomes are self-assembling nanoscale vesicles made up of an amphiphilic block copolymer comprising of polybutadiene-b-polyethylene glycol and a cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane. Functionally, ACM polymersomes serve as delivery vehicles that are efficiently taken up by dendritic cells, which are key initiators of the adaptive immune response. Two doses of our formulation elicit robust neutralizing titers in C57BL/6 mice that persist at least 40 days. Furthermore, we confirm the presence of memory CD4+ and CD8+ T cells that produce Th1 cytokines. This study is an important step towards the development of an efficacious vaccine in humans. ### Competing Interest Statement The authors declare the following competing financial interests: D.E.A. and Y.J.T. developed the cPass kit; J.H.L, A.K.K., T.A.C., T.W.C., W.W.W.Y., and M.N. are employees of ACM Biolabs Pte Ltd; F.G. is part of the ACM SAB. The authors declare no non-financial competing interests.
更多
查看译文
关键词
next generation vaccine platform,spike protein subunit vaccine,polymersomes,stable nanocarriers,sars-cov
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要