MCOLN1 gene-replacement therapy corrects neurologic dysfunction in the mouse model of mucolipidosis IV

Human Molecular Genetics(2020)

引用 0|浏览9
暂无评分
摘要
Mucolipidosis IV (MLIV, OMIM 252650) is an orphan disease leading to debilitating psychomotor deficits and vision loss. It is caused by loss-of-function mutations in the MCOLN1 gene that encodes thethe lysosomal transient receptor potential channel mucolipin 1 (TRPML1). With no existing therapy, the unmet need in this disease is very high. Here we show that AAV-mediated gene transfer of the human MCOLN1 gene rescues motor function and alleviates brain pathology in the Mcoln1−/− MLIV mouse model. Using the AAV-PHP.b vector for initial proof-of-principle experiments in symptomatic mice, we showed long-term reversal of declined motor function and significant delay of paralysis. Next, we designed self-complimentary AAV9 vector for clinical use and showed that its intracerebroventricular administration in post-natal day 1 mice significantly improved motor function and myelination and reduced lysosomal storage load in the MLIV mouse brain. We also showed that CNS targeted gene transfer is necessary to achieve therapeutic efficacy in this disease. Based on our data and general advancements in the gene therapy field, we propose scAAV9-mediated CSF-targeted MCOLN1 gene transfer as a therapeutic strategy in MLIV. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要