Enrichment of genomic variation in pathways linked to autism

biorxiv(2020)

引用 0|浏览3
暂无评分
摘要
The genetic heterogeneity of autism has stymied the search for causes and cures. Even whole-genomic studies on large numbers of families have yielded results of relatively little impact. In the present work, we analyze two genomic databases using a novel strategy that takes prior knowledge of genetic relationships into account and that was designed to boost signal important to our understanding of the molecular basis of autism. Our strategy was designed to identify significant genomic variation within a priori defined biological concepts and improves signal detection while lessening the severity of multiple test correction seen in standard analysis of genome-wide association data. Upon application of our approach using 3,244 biological concepts, we detected genomic variation in 68 biological concepts with significant association to autism in comparison to family-based controls. These concepts clustered naturally into a total of 19 classes, principally including cell adhesion, cancer, and immune response. The top-ranking concepts contained high percentages of genes already suspected to play roles in autism or in a related neurological disorder. In addition, many of the sets associated with autism at the DNA level also proved to be predictive of changes in gene expression within a separate population of autistic cases, suggesting that the signature of genomic variation may also be detectable in blood-based transcriptional profiles. This robust cross-validation with gene expression data from individuals with autism coupled with the enrichment within autism-related neurological disorders supported the possibility that the mutations play important roles in the onset of autism and should be given priority for further study. In sum, our work provides new leads into the genetic underpinnings of autism and highlights the importance of reanalysis of genomic studies of complex disease using prior knowledge of genetic organization. Author Summary The genetic heterogeneity of autism has stymied the search for causes and cures. Even whole-genomic studies on large numbers of families have yielded results of relatively little impact. In the present work, we reanalyze two of the most influential whole-genomic studies using a novel strategy that takes prior knowledge of genetic relationships into account in an effort to boost signal important to our understanding of the molecular structure of autism. Our approach demonstrates that these genome wide association studies contain more information relevant to autism than previously realized. We detected 68 highly significant collections of mutations that map to genes with measurable and significant changes in gene expression in autistic individuals, and that have been implicated in other neurological disorders believed to be closely related, and genetically linked, to autism. Our work provides leads into the genetic underpinnings of autism and highlights the importance of reanalysis of genomic studies of disease using prior knowledge of genetic organization. ### Competing Interest Statement The authors have declared no competing interest. * GWAS : genome-wide association study SNP : single-nucleotide polymorphism CHOP : Children’s Hospital of Philadelphia
更多
查看译文
关键词
autism,genomic variation,pathways
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要