Gene-rich X chromosomes implicate intragenomic conflict in the evolution of bizarre genetic systems

Proceedings of the National Academy of Sciences(2022)

引用 5|浏览9
暂无评分
摘要
Haplodiploidy and paternal genome elimination (HD/PGE) are common in invertebrates, having evolved at least two dozen times, all from male heterogamety (i.e., systems with X chromosomes). However, why X chromosomes are important for the evolution of HD/PGE remains debated. The Haploid Viability Hypothesis posits that X-linked genes promote the evolution of male haploidy by facilitating purging recessive deleterious mutations. The Intragenomic Conflict Hypothesis holds that conflict between genes drives genetic system turnover; under this model, X-linked genes could promote the evolution of male haploidy due to conflicts with autosomes over sex ratios and genetic transmission. We studied lineages where we can distinguish these hypotheses: species with germline PGE that retain an XX/X0 sex determination system (gPGE+X). Because evolving PGE in these cases involves changes in transmission without increases in male hemizygosity, a high degree of X linkage in these systems is predicted by the Intragenomic Conflict Hypothesis but not the Haploid Viability Hypothesis. To quantify the degree of X linkage, we sequenced and compared 7 gPGE+X species’ genomes with 11 related species with typical XX/XY or XX/X0 genetic systems, representing three transitions to gPGE. We find highly increased X linkage in both modern and ancestral genomes of gPGE+X species compared to non-gPGE relatives, and recover a significant positive correlation between percent X linkage and the evolution of gPGE. These are among the first empirical results suggesting a role for intragenomic conflict in the evolution of novel genetic systems like HD/PGE. Significance Statement Sex determination systems such as haplodiploidy, in which males’ gene transmission is haploid, are surprisingly common, however, the evolutionary paths to these systems are poorly understood. X chromosomes may play a particularly important role, either by increasing survival of males with only maternal genomes, or due to conflicts between X-chromosomal and autosomal genes. We studied X-chromosome gene richness in three arthropod lineages in which males are diploid as adults but only transmit their maternally-inherited haploid genome. We find that species with such atypical systems have far more X chromosomal genes than related diploid species. These results suggest that conflict between genetic elements within the genome drives the evolution of unusual sex determination systems. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要