Universal Inference Meets Random Projections: A Scalable Test for Log-concavity

Journal of Computational and Graphical Statistics(2021)

引用 0|浏览2
暂无评分
摘要
Shape constraints yield flexible middle grounds between fully nonparametric and fully parametric approaches to modeling distributions of data. The specific assumption of log-concavity is motivated by applications across economics, survival modeling, and reliability theory. However, there do not currently exist valid tests for whether the underlying density of given data is log-concave. The recent universal inference methodology provides a valid test. The universal test relies on maximum likelihood estimation (MLE), and efficient methods already exist for finding the log-concave MLE. This yields the first test of log-concavity that is provably valid in finite samples in any dimension, for which we also establish asymptotic consistency results. Empirically, we find that a random projections approach that converts the d-dimensional testing problem into many one-dimensional problems can yield high power, leading to a simple procedure that is statistically and computationally efficient.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要