Spatially resolved transcriptome profiles of mammalian kidneys illustrate the molecular complexity of functional nephron segments, cell-to-cell interactions and genetic variants

biorxiv(2020)

引用 3|浏览1
暂无评分
摘要
Understanding the molecular mechanisms underlying mammalian kidney function requires transcriptome profiling of the interplay between cells comprising nephron segments. Traditional transcriptomics requires cell dissociation, resulting in loss of the spatial context of gene expression within native tissue. To address this problem, we performed spatial transcriptomics (ST) to retain the spatial context of the transcriptome in human and mouse kidneys. The generated ST data allowed spatially resolved differential gene expression analysis, spatial identification of functional nephron segments, cell-to-cell interaction analysis, and chronic kidney disease-associated genetic variant calling. Novel ST thus provides an opportunity to enhance kidney diagnostics and knowledge, by retaining the spatial context of gene expression within intact tissue. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要