Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger Cyclin K degradation

bioRxiv (Cold Spring Harbor Laboratory)(2020)

引用 0|浏览0
暂无评分
摘要
Molecular glues are small molecules that exert their biologic or therapeutic activities by inducing gain-of-function interactions between pairs of proteins. In particular, molecular-glue degraders, which mediate interactions between target proteins and components of the ubiquitin proteasome system to cause targeted protein degradation, hold great promise as a unique modality for therapeutic targeting of proteins that are currently intractable. Here, we report a new molecular glue HQ461 discovered by high-throughput screening of small molecules that inhibited NRF2 activity. Using unbiased loss-of-function and gain-of-function genetic screening followed by biochemical reconstitution, we show that HQ461 acts by promoting interaction between CDK12 and DDB1-CUL4-RBX1 E3 ubiquitin ligase, leading to polyubiquitination and proteasomal degradation of CDK12’s interacting protein Cyclin K (CCNK). Degradation of CCNK mediated by HQ461 compromised CDK12 function, leading to reduced phosphorylation of CDK12 substrate, downregulation of DNA damage response genes, and cell death. Structure-activity relationship analysis of HQ461 revealed the importance of a 5-methylthiazol-2-amine pharmacophore and resulted in an HQ461 derivate with improved potency. Our studies reveal a new molecular glue that engages its target protein directly with DDB1 to bypass the requirement of a substrate-specific receptor, presenting a new strategy for targeted protein degradation. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
molecular glue
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要