The Ventilation Efficiency of Urban Built Intensity and Ventilation Path Identification: A Case Study of Wuhan

INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH(2021)

引用 4|浏览3
暂无评分
摘要
Urban ventilation is being hampered by rough surfaces in dense urban areas, and the microclimate and air quality of the urban built environment are not ideal. Identifying urban ventilation paths is helpful to save energy, reduce emissions, and improve the urban ecological environment. Wuhan is the capital city of Hubei, and it has a high urban built intensity and hot summers. Taking Wuhan city, with a size of 35 km x50 km, as an example, the built environment was divided into grids of 100 m x 100 m and included the building density, floor area ratio, and average building height. The ventilation mechanism of the urban built intensity index has previously been explained. The decrease in building density is not the sole factor causing an increase in wind speed; the enclosure and width of the ventilation path and the height of the front building are also influential. Twelve urban built units were selected for CFD numerical simulation. The ventilation efficiency of each grid was evaluated by calculating the wind speed ratio, maximum wind speed, average wind speed, and area ratio of strong wind. The relationship between the urban built intensity index and ventilation efficiency index was established using the factor analysis method and the Pearson correlation coefficient; building density and average building height are the most critical indexes of ventilation potential. In addition, the layout of the building also has an important impact on ventilation. A suitable built environment is that in which the building density is less than 30%, the average building height is greater than 15 m, and the floor area ratio is greater than 1.5. The urban built intensity map was weighted to identify urban ventilation paths. The paper provides a quantitative reference for scientific planning and design of the urban spatial form to improve ventilation.
更多
查看译文
关键词
urban built intensity index, ventilation efficiency index, ventilation path, geographic information system (GIS), computational fluid dynamics (CFD)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要