On the molecular mechanism of excitation-transcription coupling in skeletal muscle.

The Journal of general physiology(2022)

引用 1|浏览5
暂无评分
摘要
An important question in neuromuscular biology is how skeletal muscle cells decipher the stimulation pattern coming from motoneurons to define their phenotype-activating transcriptional changes in a process named excitation-transcription coupling. We have shown in adult muscle fibers that 20 Hz electrical stimulation (ES) activates a signaling cascade that starts with Cav1.1 activation, ATP release trough pannexin-1 channel, activation of purinergic receptors, and IP3-dependent Ca2+ signals inducing transcriptional changes related to muscle plasticity from fast to slow phenotype. Extracellular addition of 30 µM ATP mimics transcriptional changes induced by ES at 20 Hz. ATP release occurs in two peaks, the first around 15 s after ES and a second around 300 s after ES. In the present work, we used apyrase to hydrolyze ATP 60 s after ES, maintaining the first peak and eliminating the second peak. In this condition, transcriptional changes were abolished, indicating that the second peak is the one crucial to activate transcription. Additionally, we observed a small depolarization of fibers after ES. The addition of 30 to 100 µM external ATP also induced depolarization of muscle fibers. This depolarization was unable to activate contraction but was able to induce transcriptional changes induced by 20 Hz ES. These changes were completely inhibited by the IP3R blocker xestospongin B, suggesting that IP3-dependent events are triggered at these membrane depolarization values. Moreover, transcriptional changes induced by addition of 30 µM extracellular ATP was blocked by incubation of fibers with 25 µM Nifedipine. These results suggest that the second ATP peak observed after 20 Hz ES is responsible for transcriptional activation by inducing small depolarizations of fiber membranes that are also sensed by Cav1.1. Finally, we show evidence that downstream of purinergic receptors, PKC is activated, likely causing phosphorylation of ClC-1 chloride channels, possibly responsible for depolarization after 20 Hz.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要