Chrome Extension
WeChat Mini Program
Use on ChatGLM

Interlaboratory variability of activated protein C resistance using the ETP-based APC resistance assay.

Research and practice in thrombosis and haemostasis(2021)

Cited 4|Views12
No score
Abstract
BACKGROUND AND OBJECTIVE:Although the endogenous thrombin potential (ETP)-based activated protein C (APC) resistance is recommended for the development of steroid contraceptive agents, one of the main limitations of this technique was its lack of standardization, which hampered study-to-study comparison. A validated methodology that meets all the regulatory requirements in terms of analytical performances has been developed recently. To ensure a wide implementation of this test, the assessment of the interlaboratory variability was needed. METHOD:The assay was implemented in three testing laboratories. First, dose-response curves were performed to locally define APC concentration leading to 90% of ETP inhibition on healthy donors. Intra- and inter-run repeatability were assessed on a reference plasma and three quality controls. To investigate the variability in results among the different testing units, 60 donor samples were analyzed at each site. RESULTS:The APC concentration leading to 90% of ETP inhibition was defined at 1.21 µg/ml and 1.14 µg/ml in the two receiving units. Intra- and inter-run repeatability showed standard deviation below 3%. Analyses of the 60 donor samples showed no statistically significant difference. The sensitivity of the test in the different laboratories was maintained and subgroup analyses still reported significant differences depending on hormonal status of donors. CONCLUSION:This study is the first reporting the interlaboratory variability of the ETP-based APC resistance assay. Data revealed excellent intra- and interlaboratory reproducibility. These results support the concept that this blood coagulation test provides an appropriate sensitivity irrespective of the laboratory in which analyses are performed.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined