Effective limits on single scalar extensions in the light of recent LHC data

arxiv(2023)

引用 6|浏览11
暂无评分
摘要
In this paper, we work with 16 different single scalar particle extensions of the Standard Model. We present the sets of dimension-6 effective operators and the associated Wilson coefficients as functions of model parameters after integrating out the heavy scalars up to 1-loop, including the heavy-light mixing, for each such scenario. Using the correspondence between the effective operators and the observables at electroweak scale, and employing Bayesian statistics, we compute the allowed ranges of new physics parameters that are further translated and depicted in 2-dimensional Wilson coefficient space in the light of the latest CMS and ATLAS data up to $137 \text{ fb}^{-1}$ and $139\text{ fb}^{-1}$, respectively. We also adjudge the status of those new physics extensions that offer similar sets of relevant effective operators. In addition, we provide a model-independent fit of $23$ Standard Model effective field theory Wilson coefficients using electroweak precision observables, single and di-Higgs data as well as kinematic distributions of di-boson production.
更多
查看译文
关键词
single scalar extensions,effective limits
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要