MPK3-and MPK6-mediated VLN3 phosphorylation regulates actin dynamics during stomatal immunity in Arabidopsis

NATURE COMMUNICATIONS(2021)

Cited 19|Views6
No score
Abstract
Upon perception of pathogens, plants can rapidly close their stomata to restrict pathogen entry into internal tissue, leading to stomatal immunity as one aspect of innate immune responses. The actin cytoskeleton is required for plant defense against microbial invaders. However, the precise functions of host actin during plant immunity remain largely unknown. Here, we report that Arabidopsis villin3 (VLN3) is critical for plant resistance to bacteria by regulating stomatal immunity. Our in vitro and in vivo phosphorylation assays show that VLN3 is a physiological substrate of two pathogen-responsive mitogen-activated protein kinases, MPK3/6. Quantitative analyses of actin dynamics and genetic studies reveal that VLN3 phosphorylation by MPK3/6 modulates actin remodeling to activate stomatal defense in Arabidopsis. Plants can rapidly close stomata to restrict pathogen entry into leaves. Here the authors show that phosphorylation of villin3 by mitogen-activated protein kinases modulates actin remodeling to activate stomatal defense in Arabidopsis.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined