Performance and mechanism of sulfamethoxazole removal in different bioelectrochemical technology-integrated constructed wetlands.

Water research(2021)

引用 29|浏览16
暂无评分
摘要
Sulfamethoxazole (SMX) has a high concentration and detection frequency in aquatic environments due to the poor removal efficiency of traditional biological treatment processes. Bioelectrochemical technology-integrated constructed wetlands (CWs) have great potential for SMX removal; however, the process of SMX removal in different bioelectrochemical technology-integrated CWs (microbial fuel cell (MFC) and direct current (EC)) remains unclear. To address this, we examined the mechanism of SMX removal in MFCCW and ECCW. The results revealed that the SMX removal efficiency can reach 96.0 ± 2.4% in the ECCW and 97.2 ± 2.2% in the MFCCW. The enhancement of MFC for SMX removal in CW was slightly better than that in direct current (p > 0.05). It was found that the adsorption process of SMX in the substrate promoted by EC was more enhanced than that by MFC. Furthermore, bioelectrochemical technology improved plant activity, including root and enzymatic (superoxide dismutase, peroxidase, and catalase) activities, and fluorescence parameters (photochemical quenching coefficient, non-photochemical quenching coefficient, and quantum efficiency of PS II). Significant differences were found between CW and ECCW (p < 0.05), while no significant differences were found between CW and MFCCW (p > 0.05). The microbial activity and abundance in CW were improved by bioelectrochemical technology, and the microbial community structure was optimised to be simpler and more stable. However, EC tended to promote microbial and plant activity in CW, whereas MFC tended to optimise the microbial community and improve the tightness and stability of the module. The enhanced difference might also account for the changes in the SMX degradation pathway. 4-aminobenzenesulfonic acid (TP174), 3-amino-5-methylisoxazole (TP99) and 5-methylisoxazole (TP84) were all common products in the three reactors, whereas TP99 underwent further ring-opening in MFCCW and TP174 underwent further hydrolysis in ECCW. This study provided an important reference for the targeted regulation of plants and microorganisms in constructed wetlands via different bioelectrochemistry to enhance characteristic pollutants degradation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要