Hayatine inhibits amino acid-induced mTORC1 activation as a novel mTOR-Rag A/C interaction disruptor

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS(2021)

引用 1|浏览15
暂无评分
摘要
Abnormal activation of the mechanistic target of rapamycin (mTOR) signaling is commonly observed in many cancers and attracts extensive attention as an oncology drug discovery target, which is encouraged by the success of rapamycin and its analogs (rapalogs) in treatment of mTORC1-hyperactive cancers in both pre-clinic models and clinical trials. However, rapamycin and existing rapalogs have typically short lasting partial responses due to drug resistance, thereby triggering our interest to investigate a potential mTORC1 inhibitor that is mechanistically different from rapamycin. Here, we report that hayatine, a derivative from Cissampelos, can serve as a potential mTORC1 inhibitor selected from a natural compound library. The unique properties owned by hayatine such as downregulation of mTORC1 activities, induction of mTORC1's translocation to lysosomes followed by autophagy, and suppression on cancer cell growth, strongly emphasize its role as a potential mTORC1 inhibitor. Mechanistically, we found that hayatine disrupts the interaction between mTORC1 complex and its lysosomal adaptor RagA/C by binding to the hydrophobic loop of RagC, leading to mTORC1 inhibition that holds great promise to overcome rapamycin resistance. Taken together, our data shed light on an innovative strategy using structural interruption-based mTORC1 inhibitors for cancer treatment. (c) 2021 Elsevier Inc. All rights reserved.
更多
查看译文
关键词
Hayatine, mTOR, Rag A, C, Rapamycin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要