Topic-aware Heterogeneous Graph Neural Network for Link Prediction

PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021(2021)

引用 32|浏览431
暂无评分
摘要
Heterogeneous graphs (HGs), consisting of multiple types of nodes and links, can characterize a variety of real-world complex systems. Recently, heterogeneous graph neural networks (HGNNs), as a powerful graph embedding method to aggregate heterogeneous structure and attribute information, has earned a lot of attention. Despite the ability of HGNNs in capturing rich semantics which reveal different aspects of nodes, they still stay at a coarse-grained level which simply exploits structural characteristics. In fact, rich unstructured text content of nodes also carries latent but more fine-grained semantics arising from multi-facet topic-aware factors, which fundamentally manifest why nodes of different types would connect and form a specific heterogeneous structure. However, little effort has been devoted to factorizing them. In this paper, we propose a Topic-aware Heterogeneous Graph Neural Network, named THGNN, to hierarchically mine topic-aware semantics for learning multi-facet node representations for link prediction in HGs. Specifically, our model mainly applies an alternating two-step aggregation mechanism including intra-metapath decomposition and inter-metapath mergence, which can distinctively aggregate rich heterogeneous information according to the inferential topic-aware factors and preserve hierarchical semantics. Furthermore, a topic prior guidance module is also designed to keep the quality of multi-facet topic-aware embeddings relying on the global knowledge from unstructured text content in HGs. It helps to simultaneously improve both performance and interpretability. Experimental results on three real-world HGs demonstrate that our proposed model can effectively outperform the state-of-the-art methods in the link prediction task, and show the potential interpretability of learnt multi-facet topic-aware representations.
更多
查看译文
关键词
Heterogeneous graph,graph neural networks,representation learning,link prediction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要