Rapid Recalibration of Peri-Personal Space; Psychophysical, Electrophysiological, and Neural Network Modeling Evidence

biorxiv(2019)

Cited 0|Views0
No score
Abstract
Interactions between individuals and the environment are mediated by the body and occur within the peri-personal space (PPS) – the space surrounding the body. The multisensory encoding of this space plastically adapts to different bodily constraints and stimuli features. However, these remapping effects have only been demonstrated on the time-scale of days, hours, or minutes. Yet, if PPS mediates human-environment interactions in an adaptive manner, its representation should be altered by sensory history on trial-to-trial timescale. Here we test this idea first via a visuo-tactile reaction time paradigm in augmented reality where participants are asked to respond as fast as possible to touch, as visual object approach them. Results demonstrate that reaction times to touch are facilitated as a function of visual proximity, and the sigmoidal function describing this facilitation shifts closer to the body if the immediately precedent trial had indexed a smaller visuo-tactile disparity (i.e., positive serial dependency). Next, we derive the electroencephalographic correlates of PPS and demonstrate that this measure is equally shaped by recent sensory history. Finally, we demonstrate that a validated neural network model of PPS is able to account for the present results via a simple Hebbian plasticity rule. The present findings suggest that PPS encoding remaps on a very rapid time-scale and is sensitive to recent sensory history.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined