Disrupting the leukemia niche in the central nervous system attenuates leukemia chemoresistance

biorxiv(2019)

引用 0|浏览3
暂无评分
摘要
Protection from acute lymphoblastic leukemia (ALL) relapse in the central nervous system (CNS) is crucial to survival and quality of life for ALL patients. Current CNS-directed therapies cause significant toxicities and are only partially effective. Moreover, the impact of the CNS microenvironment on leukemia biology is poorly understood. Herein, we showed that leukemia cells associated with the meninges of xenotransplanted mice, or co-cultured with meningeal cells, exhibit enhanced chemoresistance due to effects on both apoptosis balance and quiescence. From a mechanistic standpoint, we identified that leukemia chemoresistance is primarily mediated by direct leukemia-meningeal cell interactions and overcome by detaching the leukemia cells from the meninges. Next, we used a co-culture adhesion assay to identify drugs that disrupted leukemia-meningeal adhesion. In addition to identifying several drugs that inhibit canonical cell adhesion targets we found that Me6TREN, a novel hematopoietic stem cell (HSC) mobilizing compound, also disrupts leukemia-meningeal adhesion in vitro and in vivo . Finally, Me6TREN enhanced the efficacy of cytarabine in treating CNS leukemia in xenotransplanted mice. This work demonstrates that the meninges exert a critical influence on leukemia chemoresistance, elucidates mechanisms of CNS relapse beyond the well-described role of the blood-brain barrier, and identifies novel therapeutic approaches for overcoming chemoresistance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要