Physarum Inspired Dynamics to Solve Semi-Definite Programs

arxiv(2022)

引用 0|浏览1
暂无评分
摘要
Physarum Polycephalum is a slime mold that can solve shortest path problems. A mathematical model based on Physarum's behavior, known as the Physarum Directed Dynamics, can solve positive linear programs. In this paper, we present a family of Physarum-based dynamics extending the previous work and introduce a new algorithm to solve positive Semi-Definite Programs (SDP). The Physarum dynamics are governed by orthogonal projections (w.r.t. time-dependent scalar products) on the affine subspace defined by the linear constraints. We present a natural generalization of the scalar products used in the LP case to the matrix space for SDPs, which boils down to the linear case when all matrices in the SDP are diagonal, thus, representing an LP. We investigate the behavior of the induced dynamics theoretically and experimentally, highlight challenges arising from the non-commutative nature of matrix products, and prove soundness and convergence under mild conditions. Moreover, we consider a more abstract view on the dynamics that suggests a slight variation to guarantee unconditional soundness and convergence-to-optimality. By simulating these dynamics using suitable discretizations, one obtains numerical algorithms for solving positive SDPs, which have applications in discrete optimization, e.g., for computing the Goemans-Williamson approximation for MaxCut or the Lovasz theta number for determining the clique/chromatic number in perfect graphs.
更多
查看译文
关键词
dynamics,programs,semi-definite
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要