Large-scale chemical-genetics yields new Mycobacterium tuberculosis inhibitor classes

biorxiv(2019)

引用 0|浏览2
暂无评分
摘要
New antibiotics are needed to combat rising resistance, with new Mycobacterium tuberculosis (Mtb) drugs of highest priority. Conventional whole-cell and biochemical antibiotic screens have failed. We developed a novel strategy termed PROSPECT (PRimary screening Of Strains to Prioritize Expanded Chemistry and Targets) in which we screen compounds against pools of strains depleted for essential bacterial targets. We engineered strains targeting 474 Mtb essential genes and screened pools of 100-150 strains against activity-enriched and unbiased compounds libraries, measuring > 8.5-million chemical-genetic interactions. Primary screens identified >10-fold more hits than screening wild-type Mtb alone, with chemical-genetic interactions providing immediate, direct target insight. We identified > 40 novel compounds targeting DNA gyrase, cell wall, tryptophan, folate biosynthesis, and RNA polymerase, as well as inhibitors of a novel target EfpA. Chemical optimization yielded EfpA inhibitors with potent wild-type activity, thus demonstrating PROSPECT’s ability to yield inhibitors against novel targets which would have eluded conventional drug discovery.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要