Structural and functional studies of the RBPJ-SHARP complex reveal conserved corepressor binding site

bioRxiv (Cold Spring Harbor Laboratory)(2018)

引用 28|浏览0
暂无评分
摘要
The Notch pathway is a conserved signaling mechanism that is essential for cell fate decisions during pre and postnatal development. Dysregulated signaling underlies the pathophysiology of numerous human diseases, most notably T-cell acute lymphoblastic leukemia. Receptor-ligand interactions result in changes in gene expression, which are regulated by the transcription factor CSL. CSL forms a complex with the intracellular domain of the Notch receptor and the transcriptional coactivator Mastermind, which is required to activate transcription of all Notch target genes. CSL can also function as repressor by interacting with corepressor proteins, e.g . SHARP in mammals and Hairless in Drosophila melanogaster; however, its role as a transcriptional repressor is not well understood. Here we determine the high-resolution structure of RBPJ, the mouse CSL ortholog, bound to the corepressor SHARP and DNA, which reveals a new mode of corepressor binding to CSL and an interesting example for how ligand binding sites evolve in proteins. Based on the structure, we designed and tested a number of mutants in biophysical, biochemical, and cellular assays to characterize the role of RBPJ as a repressor of Notch target genes. Our cellular studies clearly demonstrate that RBPJ mutants that are deficient for binding SHARP are incapable of repressing transcription from genes responsive to Notch signaling. Altogether, our structure-function studies of the RBPJ-SHARP corepressor complex bound to DNA provide significant insights into the repressor function of RBPJ and identify a new binding pocket on RBPJ that could be targeted for therapeutic benefit.
更多
查看译文
关键词
corepressor,binding,rbpj-sharp
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要