Modulation of input sensitivity and output gain by retinal amacrine cells

biorxiv(2023)

Cited 0|Views3
No score
Abstract
The prevailing hierarchical view of the visual system consists of parallel circuits that begin in the retina, which then sum effects across sequential levels, increasing in complexity. Yet a separate type of interaction, whereby one visual pattern changes the influence of another, known as modulation, has received much less attention in terms of its circuit mechanisms. Retinal amacrine cells are a diverse class of inhibitory interneurons that are thought to have modulatory effects, but we lack a general understanding of their functional types. Using dynamic causal experiments in the salamander retina perturbing amacrine cells along with an unsupervised computational framework, we find that amacrine cell modulatory effects cluster into two distinct types. One type controls ganglion cell sensitivity to individual visual features, and a second type controls the ganglion cell’s output gain, acting to gate all features. These results establish three separate general roles of amacrine cells – to generate primary visual features, to use context to select specific visual features and to gate retinal output. ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined