Facilitating room-temperature oxygen ion migration via Co-O bond activation in cobaltite films

NANOSCALE(2021)

引用 6|浏览9
暂无评分
摘要
Oxygen ion migration in strongly correlated oxides can cause dramatic changes in the crystal structure, chemical and magnetoelectric properties, which holds promising for a wide variety of applications in catalysis, energy conversion, and electronics. However, the high strength and stability of metal-oxygen (M-O) bonds cause a large thermodynamic barrier for oxygen migration. Here, we designed Co-O bond activation in cobaltite (SrCoOx) films by Au-nanodot-decoration. Charge transfer from Au to SrCoOx effectively weakens the Co-O bond, meanwhile Co-O-Au synergistic bonding remarkably decreases the migration barrier of oxygen ions. Fast oxygen evolution occurs at the perimeter of the Au/SrCoOx interface, and the chemical potential gradient of O2- drives inner ion diffusion to the surface. Consequently, bias-free topotactic phase reduction from perovskite SrCoO3-delta to brownmillerite SrCoO2.5 has been achieved at room temperature. Our finding explores a new dimension to accelerate oxygen ion kinetics in transition-metal oxides from the aspect of interfacial bond activation, which is significant for developing oxide/noble-metal interfaces for high-efficiency ion migration and redox catalysis at low temperature.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要