Effect of different surface treatments on surface roughness, phase transformation, and biaxial flexural strength of dental zirconia.

Journal of dental research, dental clinics, dental prospects(2021)

Cited 5|Views1
No score
Abstract
Interfacial failures at the cement‒restoration interface highlights the importance of effective surface treatment with no adverse effect on the zirconia's mechanical properties. This study aimed to determine the effect of different surface treatments on dental graded zirconia's surface roughness and certain mechanical properties. Forty sintered zirconia specimens were randomly divided into four groups (n=10): control (no surface treatment), sandblasting (SA), grinding with diamond bur (GB), and Er,Cr:YSGG laser (LS). Following surface treatment, the surface roughness and surface topography of the specimens were examined. X-ray diffraction (XRD) was conducted. In addition, the biaxial flexural strengths of specimens were evaluated. The data were analyzed using one-way analysis of variance (ANOVA) and post hoc Tukey tests; the Pearson correlation coefficient was calculated between either volumetric percentage of monoclinic phase or roughness and flexural strength of specimens (α=0.05). The GB group exhibited significantly greater surface roughness compared to the other groups ( < 0.005). The LS and control groups exhibited a significantly lower volumetric percentage of the monoclinic phase ( < 0.001) than the GB and SA treatments. The SA group exhibited significantly higher flexural strength than the control ( = 0.02) and GB groups ( < 0.01). Furthermore, the Weibull analysis for the LS showed higher reliability for the flexural strength than other treatments. Er,Cr:YSGG laser treatment, with the lowest extent of phase transformation and reliable flexural strength, can be a promising choice for surface treatment of zirconia.
More
Translated text
Key words
Flexural strength,Surface properties,Y-TZP ceramic,YSGG laser
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined