Chip-Scalable, Room-Temperature, Zero-Bias, Graphene-Based Terahertz Detectors with Nanosecond Response Time

ACS NANO(2021)

引用 20|浏览10
暂无评分
摘要
The scalable synthesis and transfer of large-area graphene underpins the development of nanoscale photonic devices ideal for new applications in a variety of fields, ranging from biotechnology, to wearable sensors for healthcare and motion detection, to quantum transport, communications, and metrology. We report room-temperature zero-bias thermoelectric photodetectors, based on single- and polycrystal graphene grown by chemical vapor deposition (CVD), tunable over the whole terahertz range (0.1-10 THz) by selecting the resonance of an on-chip patterned nanoantenna. Efficient light detection with noise equivalent powers <1 nWHz(-1/2) and response time similar to 5 ns at room temperature are demonstrated. This combination of specifications is orders of magnitude better than any previous CVD graphene photoreceiver operating in the sub-THz and THz range. These state-of-the-art performances and the possibility of upscaling to multipixel architectures on complementary metal-oxide-semiconductor platforms are the starting points for the realization of cost-effective THz cameras in a frequency range still not covered by commercially available microbolometer arrays.
更多
查看译文
关键词
photodetectors, graphene, terahertz, nanophotonics, chemical vapor deposition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要