Electro-Active and Photo-Active Vanadium Oxide Nanowire Thermo-Hygroscopic Actuators for Kirigami Pop-up

ADVANCED SCIENCE(2021)

引用 11|浏览14
暂无评分
摘要
Emerging technologies such as soft robotics, active biomedical devices, wearable electronics, haptic feedback systems, and healthcare systems require high-fidelity soft actuators showing reliable responses under multi-stimuli. In this study, the authors report an electro-active and photo-active soft actuator based on a vanadium oxide nanowire (VONW) hybrid film with greatly improved actuation performances. The VONWs directly grown on a cellulose fiber network increase the surface area up to 30-fold and boost the hydrophilicity owing to the presence of oxygen-rich functional groups in the nanowire surfaces. Taking advantage of the high surface area and hydrophilicity of VONWs, a soft thermo-hygroscopic VONW actuator capable of being controlled by both light and electric sources shows greatly enhanced actuation deformation by almost 70% and increased actuation speed over 3 times during natural convection cooling. Most importantly, the proposed VONW actuator exhibits a remarkably improved blocking force of up to 200% compared with a bare paper actuator under light stimulation, allowing them to realize a complex kirigami pop-up and to accomplish repeatable shape transformation from a 2D planar surface to a 3D configuration.
更多
查看译文
关键词
actuator, kirigami, photo-active, thermo-hygroscopic, vanadium oxide nanowires
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要