Student Becomes Teacher: Training Faster Deep Learning Lightweight Networks For Automated Identification Of Optical Coherence Tomography B-Scans Of Interest Using A Student-Teacher Framework

BIOMEDICAL OPTICS EXPRESS(2021)

引用 3|浏览14
暂无评分
摘要
This work explores a student-teacher framework that leverages unlabeled images to train lightweight deep learning models with fewer parameters to perform fast automated detection of optical coherence tomography B-scans of interest. Twenty-seven lightweight models (LWMs) from four families of models were trained on expert-labeled B-scans (similar to 70K) as either "abnormal" or "normal", which established a baseline performance for the models. Then the LWMs were trained from random initialization using a student-teacher framework to incorporate a large number of unlabeled B-scans (similar to 500K). A pre-trained ResNet50 model served as the teacher network. The ResNet50 teacher model achieved 96.0% validation accuracy and the validation accuracy achieved by the LWMs ranged from 89.6% to 95.1%. The best performing LWMs were 2.53 to 4.13 times faster than ResNet50 (0.109s to 0.178s vs. 0.452s). All LWMs benefitted from increasing the training set by including unlabeled B-scans in the student-teacher framework, with several models achieving validation accuracy of 96.0% or higher. The three best-performing models achieved comparable sensitivity and specificity in two hold-out test sets to the teacher network. We demonstrated the effectiveness of a student-teacher framework for training fast LWMs for automated B-scan of interest detection leveraging unlabeled, routinely-available data. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要