Reconfigurable and real-time high-bandwidth Nyquist signal detection with low-bandwidth in silicon photonics

OPTICS EXPRESS(2022)

引用 10|浏览11
暂无评分
摘要
We demonstrate for the first time, to the best of our knowledge, reconfigurable and real-time orthogonal time-domain detection of a high-bandwidth Nyquist signal with a low-bandwidth silicon photonics Mach-Zehnder modulator based receiver. As the Nyquist signal has a rectangular bandwidth, it can be multiplexed in the wavelength domain without any guardband as a part of a Nyquist-WDM superchannel. These superchannels can be additionally multiplexed in space and polarization. Thus, the presented demonstration can open a new possibility fbr the detection of multidimensional parallel data signals with silicon photonics. No external pulse source is needed for the receiver, and frequency-time coherence is used to sample the incoming Nyquist signal with orthogonal sine-shaped Nyquist pulse sequences. All parameters are completely tunable in the electrical domain. The feasibility of the scheme is demonstrated through a proof-of-concept experiment over the entire C-band (1530 nm-1560 nm), employing a 24 Gbaud Nyquist QPSK signal due to experimental constraints on the transmitter side electronics. However, the silicon Mach-Zehnder modulator with a 3-dB bandwidth of only 16 GHz can process Nyquist signals of 90 GHz optical bandwidth, suggesting a possibility to detect symbol rates up to 90 GBd in an integrated Nyquist receiver. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要