Information-Theoretic Limits of Integrated Sensing and Communication with Correlated Sensing and Channel States

arxiv(2021)

引用 5|浏览1
暂无评分
摘要
Integrated sensing and communication (ISAC) emerges as a new design paradigm that combines both sensing and communication systems to jointly utilize their resources and to pursue mutual benefits for future B5G and 6G networks. In ISAC, the hardware and spectrum co-sharing leads to a fundamental tradeoff between sensing and communication performance, which is not well understood except for very simple cases with the same sensing and channel states, and perfect channel state information at the receiver (CSIR). In this paper, a more general point-to-point ISAC model is proposed to account for the scenarios that the sensing state is different from but correlated with the channel state, and the CSIR is not necessarily perfect. For the model considered, the optimal tradeoff is characterized by a capacity-distortion function that quantifies the best communication rate for a given sensing distortion constraint requirement. An iterative algorithm is proposed to compute such tradeoff, and a few non-trivial examples are constructed to demonstrate the benefits of ISAC as compared to the separation-based approach.
更多
查看译文
关键词
Capacity-distortion tradeoff,connected vehicular networks,correlated sensing and channel states,integrated sensing and communication
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要