Polarization-Insensitive Broadband THz Absorber Based on Circular Graphene Patches

NANOMATERIALS(2021)

引用 11|浏览5
暂无评分
摘要
A polarization-insensitive broadband terahertz absorber based on single-layer graphene metasurface has been designed and simulated, in which the graphene metasurface is composed of isolated circular patches. After simulation and optimization, the absorption bandwidth of this absorber with more than 90% absorptance is up to 2 THz. The simulation results demonstrate that the broadband absorption can be achieved by combining the localized surface plasmon (LSP) resonances on the graphene patches and the resonances caused by the coupling between them. The absorption bandwidth can be changed by changing the chemical potential of graphene and the structural parameters. Due to the symmetrical configuration, the proposed absorber is completely insensitive to polarization and have the characteristics of wide angle oblique incidence that they can achieve broadband absorption with 70% absorptance in the range of incident angle from 0 degrees to 50 degrees for both TE and TM polarized waves. The flexible and simple design, polarization insensitive, wide-angle incident, broadband and high absorption properties make it possible for our proposed absorber to have promising applications in terahertz detection, imaging and cloaking objects.
更多
查看译文
关键词
terahertz, absorber, graphene, metasurface, polarization-insensitive device
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要