In-Situ Reaction Method to Synthetize Constant Solid-State Composites as Phase Change Materials for Thermal Energy Storage

MATERIALS(2021)

Cited 0|Views6
No score
Abstract
The encapsulation and heat conduction of molten salt are very important for its application in heat storage systems. The general practice is to solidify molten salt with ceramic substrate and enhance heat conduction with carbon materials, but the cycle stability is not ideal. For this reason, it is of practical significance to study heat storage materials with a carbon-free thermal conductive adsorption framework. In this paper, the in-situ reaction method was employed to synthetize the constant solid-state composites for high-temperature thermal energy storage. AlN is hydrolyzed and calcined to form h-Al2O3 with a mesoporous structure to prevent the leakage of molten eutectic salt at high temperature. Its excellent thermal conductivity simultaneously improves the thermal conductivity of the composites. It is found that 15CPCMs prepared with 15% water addition have the best thermal conductivity (4.928 W/m & BULL;K) and mechanical strength (30.2 MPa). The enthalpy and the thermal storage density of 15CPCMs are 201.4 J/g and 1113.6 J/g, respectively. Due to the excellent leak-proof ability and lack of carbon materials, the 15CPCMs can maintain almost no mass loss after 50 cycles. These results indicate that 15CPCMs have promising prospects in thermal storage applications.
More
Translated text
Key words
thermal energy storage, in-situ reaction, 15CPCMs, thermophysical properties
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined