谷歌浏览器插件
订阅小程序
在清言上使用

Trivalent PROTACs enhance protein degradation via combined avidity and cooperativity

Nature Chemical Biology(2021)

引用 80|浏览30
暂无评分
摘要
Bivalent proteolysis-targeting chimeras (PROTACs) drive protein degradation by simultaneously binding a target protein and an E3 ligase and forming a productive ternary complex. We hypothesized that increasing binding valency within a PROTAC could enhance degradation. Here, we designed trivalent PROTACs consisting of a bivalent bromo and extra terminal (BET) inhibitor and an E3 ligand tethered via a branched linker. We identified von Hippel–Lindau (VHL)-based SIM1 as a low picomolar BET degrader with preference for bromodomain containing 2 (BRD2). Compared to bivalent PROTACs, SIM1 showed more sustained and higher degradation efficacy, which led to more potent anticancer activity. Mechanistically, SIM1 simultaneously engages with high avidity both BET bromodomains in a cis intramolecular fashion and forms a 1:1:1 ternary complex with VHL, exhibiting positive cooperativity and high cellular stability with prolonged residence time. Collectively, our data along with favorable in vivo pharmacokinetics demonstrate that augmenting the binding valency of proximity-induced modalities can be an enabling strategy for advancing functional outcomes. Trivalent PROTACs are reported as a strategy to increase protein degradation efficacy and therapeutic window by combining avidity of target engagement with cooperativity to form highly favorable and productive ternary complexes.
更多
查看译文
关键词
Mechanism of action,Pharmacology,Small molecules,Chemistry/Food Science,general,Biochemical Engineering,Biochemistry,Cell Biology,Bioorganic Chemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要