Adiponectin Ameliorated Pancreatic Islet Injury Induced by Chronic Intermittent Hypoxia through Inhibiting the Imbalance in Mitochondrial Fusion and Division

Chinese Medical Sciences Journal(2021)

引用 0|浏览4
暂无评分
摘要
Objective This study aimed to assess the protective value of adiponectin (APN) in pancreatic islet injury induced by chronic intermittent hypoxia (CIH). Methods Sixty rats were randomly divided into three groups: normal control (NC) group, CIH group, and CIH with APN supplement (CIH+APN) group. After 5 weeks of CIH exposure, we conducted oral glucose tolerance tests (OGTT) and insulin released test (IRT), examined and compared the adenosine triphosphate (ATP) levels, mitochondrial membrane potential (MMP) levels, reactive oxygen species (ROS) levels, enzymes gene expression levels of Ant1, Cs, Hmox1, and Cox4i1 which represented mitochondrial tricarboxylic acid cycle function, the protein and gene expression levels of DRP1, FIS1, MFN1, and OPA1 which represented mitochondrial fusion and division, and the protein expression levels of BAX, BCL-2, cleaved Caspase-3, and cleaved PARP which represented mitochondrial associated apoptosis pathway of pancreatic islet. Results OGTT and IRT showed blood glucose and insulin levels had no differences among the NC, CIH and CIH+APN groups (both P>0.05) at 0 min, 20 min, 30 min, 60 min, 120 min. However, we found that compared to NC group, CIH increased the ROS level, reduced ATP level and MMP level. The islets of CIH exposed rats showed reduced gene expression levels of Ant1, Cs, Hmox1, and Cox4i1, decreased protein and gene expression levels of MFN1 and OPA1, increased protein and gene expression levels of DRP1 and FIS1, increased protein expression levels of cleaved Caspase-3 and cleaved PARP, with lower ratio of BCL-2/BAX at protein expression level. All the differences among three groups were statistically significant. APN treated CIH rats showed mitigated changes in the above measurements associated with islet injuries. Conclusion APN may ameliorate the pancreatic islet injury induced by CIH via inhibiting the imbalance in mitochondrial fusion and division.
更多
查看译文
关键词
obstructive sleep apnea hypopnea syndrome,chronic intermittent hypoxia,adiponectin,mitochondrial fusion and division,pancreatic islet
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要