Optimized hip-knee-ankle exoskeleton assistance at a range of walking speeds.

Journal of neuroengineering and rehabilitation(2021)

引用 18|浏览6
暂无评分
摘要
BACKGROUND:Autonomous exoskeletons will need to be useful at a variety of walking speeds, but it is unclear how optimal hip-knee-ankle exoskeleton assistance should change with speed. Biological joint moments tend to increase with speed, and in some cases, optimized ankle exoskeleton torques follow a similar trend. Ideal hip-knee-ankle exoskeleton torque may also increase with speed. The purpose of this study was to characterize the relationship between walking speed, optimal hip-knee-ankle exoskeleton assistance, and the benefits to metabolic energy cost. METHODS:We optimized hip-knee-ankle exoskeleton assistance to reduce metabolic cost for three able-bodied participants walking at 1.0 m/s, 1.25 m/s and 1.5 m/s. We measured metabolic cost, muscle activity, exoskeleton assistance and kinematics. We performed Friedman's tests to analyze trends across walking speeds and paired t-tests to determine if changes from the unassisted conditions to the assisted conditions were significant. RESULTS:Exoskeleton assistance reduced the metabolic cost of walking compared to wearing the exoskeleton with no torque applied by 26%, 47% and 50% at 1.0, 1.25 and 1.5 m/s, respectively. For all three participants, optimized exoskeleton ankle torque was the smallest for slow walking, while hip and knee torque changed slightly with speed in ways that varied across participants. Total applied positive power increased with speed for all three participants, largely due to increased joint velocities, which consistently increased with speed. CONCLUSIONS:Exoskeleton assistance is effective at a range of speeds and is most effective at medium and fast walking speeds. Exoskeleton assistance was less effective for slow walking, which may explain the limited success in reducing metabolic cost for patient populations through exoskeleton assistance. Exoskeleton designers may have more success when targeting activities and groups with faster walking speeds. Speed-related changes in optimized exoskeleton assistance varied by participant, indicating either the benefit of participant-specific tuning or that a wide variety of torque profiles are similarly effective.
更多
查看译文
关键词
hip-knee-ankle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要