Layer-by-Layer Integration of Zirconium Metal-Organic Frameworks onto Activated Carbon Spheres and Fabrics with Model Nerve Agent Detoxification Properties.

ACS APPLIED MATERIALS & INTERFACES(2021)

引用 16|浏览15
暂无评分
摘要
We report the controlled synthesis of thin films of prototypical zirconium metal-organic frameworks [Zr6O4(OH)4(benzene-1,4-dicarboxylate-2-X)6] (X = H, UiO-66 and X = NH2, UiO-66-NH2) over the external surface of shaped carbonized substrates (spheres and textile fabrics) using a layer-by-layer method. The resulting composite materials contain metal-organic framework (MOF) crystals homogeneously distributed over the external surface of the porous shaped bodies, which are able to capture an organophosphate nerve agent simulant (diisopropylfluorophosphate, DIFP) in competition with moisture (very fast) and hydrolyze the P-F bond (slow). This behavior confers the composite material self-cleaning properties, which are useful for blocking secondary emission problems of classical protective equipment based on activated carbon.
更多
查看译文
关键词
composite, thin film, chemical warfare agent, filter, protective garments, heterogeneous catalysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要