Mutational profile confers increased stability of SARS-CoV-2 spike protein in Brazilian isolates.

Journal of biomolecular structure & dynamics(2022)

引用 3|浏览10
暂无评分
摘要
Spike (S) protein has been recognized as a promising molecular target for diagnostic, vaccines and antiviral drugs development for COVID-19. In this study, we analyzed the most predominant mutations in the S protein of Brazilian isolates and predicted the effect of these amino acid alterations to protein conformation. A total of 25,924 sequences were obtained from GISAID for five regions of Brazilian territory (Midwest, North, Northeast, South, and Southeast), according to exclusion criteria. Most of the SARS-CoV-2 isolates belongs to the G clade and showed a large occurrence of D614G, N501Y and L18F substitutions. Prediction effects of these amino acid substitutions on the structure dynamics of the spike protein indicated a positive ΔΔG values and negative ΔΔS in most cases which is associated to structural stabilization and flexibility reduction of the S protein. Mutations E484K, N501Y and K417N belong to several SARS-CoV-2 variants of concern such as Alpha, Beta, Gamma and Delta, and showed high incidence among Brazilian isolates. These mutations have been described to increase RBD affinity to ACE-2 host and abolishment of RBD affinity to potent neutralizing ant-RBD. The increase in rates of infection and reinfection requires continuous genomic surveillance studies in order to characterize emerging mutations and monitor vaccine efficacy, and thus consideration structural data and dynamics in the observed phenotypes.Communicated by Ramaswamy H. Sarma.
更多
查看译文
关键词
SARS-CoV-2,Structure dynamics,adaptative evolution,convergent adaptative evolution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要