Chitosan/Polyvinyl Alcohol/ Lauramidopropyl Betaine/2D-HOF Mixed Film with Abundant Hydrogen Bonds Acts as High Mechanical Strength Artificial Skin

MACROMOLECULAR BIOSCIENCE(2021)

引用 9|浏览11
暂无评分
摘要
The mechanical properties of artificial skins are complicated to maintain under ensuring air permeability and antimicrobial. Thus, a series of hydrophilic antimicrobial polymer networks are prepared by crosslinking chitosan and polyvinyl alcohol with the lauramidopropyl betaine and hydrogen bond organic framework (CS/PVA/LPB/2D-HOF). The mechanical performance of the control groups and the complex are systematically evaluated to attain an artificial strength skin. The CS/PVA/LPB/2D-HOF complex exhibits strong mechanical abilities than other control groups. By analyzing the IR spectra and the morphology, the synergistic effect of hydrogen bonds between molecules and cracks significantly improves the mechanical properties of the complex. Its maximum tensile strength can reach 29 MPa, and its maximum load capacity can reach 3700 g. Notably, the composite membrane also performs an excellent antimicrobial activity. In vivo and in vitro experiments show that the hybrid membrane can promote tissue regeneration and wound healing (95%). These results may open up the opportunity for future composite material investigations in the artificial skin and tissue engineering field.
更多
查看译文
关键词
artificial skins, chitosan, hydrogen bond organic framework, hydrophilic antimicrobial, polyvinyl alcohol
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要