Effect of non-ionizing reaction rate (assumed to be controllable) on the plasma generation mechanism and communication around RAMC vehicle during atmospheric reentry

SCIENTIFIC REPORTS(2021)

引用 4|浏览17
暂无评分
摘要
Radio frequency (RF) blackout occurs during radio attenuation measurement C (RAMC) vehicle reentry due to the attenuation effect of the plasma sheath on the communication signal. In recent years, the mitigation mechanism of chemical reaction for RF blackout problem has gradually been studied numerically and experimentally. However, the effect of non-ionization reaction rate has been ignored because it does not directly involve the generation of electrons. In the present study, the influence of non-ionizing reaction rate on the plasma generation mechanism and EM wave attenuation was numerically solved by the plasma flow and multilayer transmission model. According to the simulation results, only the reaction rate of NO ⇌ N + O has a significant effect on the electron number density in all non-ionizing reactions, and the degree of influence is less than the ionization reaction rate. The EM wave attenuation decreases with the decrease of the reaction rate of NO ⇌ N + O . When the reaction rate is reduced by 25 times, the maximum attenuation of electromagnetic wave can be reduced by 12 dB. Finally, a potential scheme by reducing the reaction rate of NO ⇌ N + O was proposed to mitigate the RF blackout problem.
更多
查看译文
关键词
Engineering,Physics,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要