PhiNets: A Scalable Backbone for Low-power AI at the Edge

ACM Transactions on Embedded Computing Systems(2022)

引用 6|浏览15
暂无评分
摘要
AbstractIn the Internet of Things era, where we see many interconnected and heterogeneous mobile and fixed smart devices, distributing the intelligence from the cloud to the edge has become a necessity. Due to limited computational and communication capabilities, low memory and limited energy budget, bringing artificial intelligence algorithms to peripheral devices, such as end-nodes of a sensor network, is a challenging task and requires the design of innovative solutions. In this work, we present PhiNets, a new scalable backbone optimized for deep-learning-based image processing on resource-constrained platforms. PhiNets are based on inverted residual blocks specifically designed to decouple the computational cost, working memory, and parameter memory, thus exploiting all available resources for a given platform. With a YoloV2 detection head and Simple Online and Realtime Tracking (SORT), the proposed architecture achieves state-of-the-art results in (i) detection on the COCO and VOC2012 benchmarks, and (ii) tracking on the MOT15 benchmark. PhiNets obtain a reduction in parameter count of around 90% with respect to previous state-of-the-art models (EfficientNetv1, MobileNetv2) and achieve better performance with lower computational cost. Moreover, we demonstrate our approach on a prototype node based on an STM32H743 microcontroller (MCU) with 2 MB of internal Flash and 1MB of RAM and achieve power requirements in the order of 10 mW. The code for the PhiNets is publicly available on GitHub.1
更多
查看译文
关键词
Multi-object tracking,neural networks,edge AI,Tiny ML
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要