Incremental Visual Occlusion During Split-Belt Treadmill Walking Has No Gradient Effect on Adaptation or Retention

PERCEPTUAL AND MOTOR SKILLS(2021)

Cited 1|Views4
No score
Abstract
Split-belt treadmills have become an increasingly popular means of quantifying ambulation adaptability. Multiple sensory feedback mechanisms, including vision, contribute to task execution and adaptation success. No studies have yet explored visual feedback effects on locomotor adaptability across a spectrum of available visual information. In this study, we sought to better understand the effects of visual information on locomotor adaptation and retention by directly comparing incremental levels of visual occlusion. Sixty healthy young adults completed a split-belt adaptation protocol, including a baseline, asymmetric walking condition (adapt), a symmetric walking condition (de-adapt), and another asymmetric walking condition (re-adapt). We randomly assigned participants into conditions with varied visual occlusion (i.e., complete and lower visual field occlusion, or normal vision). We captured kinematic data, and outcome measures included magnitude of asymmetry, spatial and temporal contributions to step length asymmetry, variability of the final adapted pattern, and magnitude of adaptation. We used repeated measures and four-way MANOVAs to examine the influence of visual occlusion and walking condition. Participants with complete, compared to lower visual field visual occlusion displayed less consistency in their walking pattern, evident via increased step length standard deviation (p = .007, d = 0.89), and compared to normal vision groups (p = .003 d = 0.81). We found no other group differences, indicating that varying levels of visual occlusion did not significantly affect locomotor adaptation or retention. This study offers insight into the role vision plays in locomotor adaptation and retention with clinical utility for improving variability in step control.
More
Translated text
Key words
vision, adaptation, retention, gait, variability
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined