Chrome Extension
WeChat Mini Program
Use on ChatGLM

Solving the time-independent Schrodinger equation for chains of coupled excitons and phonons using tensor trains

JOURNAL OF CHEMICAL PHYSICS(2022)

Cited 6|Views12
No score
Abstract
We demonstrate how to apply the tensor-train format to solve the time-independent Schrodinger equation for quasi-one-dimensional excitonic chain systems with and without periodic boundary conditions. The coupled excitons and phonons are modeled by Frohlich-Holstein type Hamiltonians with on-site and nearest-neighbor interactions only. We reduce the memory consumption as well as the computational costs significantly by employing efficient decompositions to construct low-rank tensor-train representations, thus mitigating the curse of dimensionality. In order to compute also higher quantum states, we introduce an approach that directly incorporates the Wielandt deflation technique into the alternating linear scheme for the solution of eigenproblems. Besides systems with coupled excitons and phonons, we also investigate uncoupled problems for which (semi-)analytical results exist. There, we find that in the case of homogeneous systems, the tensor-train ranks of state vectors only marginally depend on the chain length, which results in a linear growth of the storage consumption. However, the central processing unit time increases slightly faster with the chain length than the storage consumption because the alternating linear scheme adopted in our work requires more iterations to achieve convergence for longer chains and a given rank. Finally, we demonstrate that the tensor-train approach to the quantum treatment of coupled excitons and phonons makes it possible to directly tackle the phenomenon of mutual self-trapping. We are able to confirm the main results of the Davydov theory, i.e., the dependence of the wave packet width and the corresponding stabilization energy on the exciton-phonon coupling strength, although only for a certain range of that parameter. In future work, our approach will allow calculations also beyond the validity regime of that theory and/or beyond the restrictions of the Frohlich-Holstein type Hamiltonians.
More
Translated text
Key words
phonons,tensor trains,excitons,time-independent
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined