Ketone Ester D-Beta-Hydroxybutyrate-(R)-1,3 Butanediol Prevents Decline In Cardiac Function In Type 2 Diabetic Mice

JOURNAL OF THE AMERICAN HEART ASSOCIATION(2021)

引用 11|浏览22
暂无评分
摘要
Background Heart failure is responsible for approximately 65% of deaths in patients with type 2 diabetes mellitus. However, existing therapeutics for type 2 diabetes mellitus have limited success on the prevention of diabetic cardiomyopathy. The aim of this study was to determine whether moderate elevation in D-beta-hydroxybutyrate improves cardiac function in animals with type 2 diabetes mellitus. Methods and Results Type 2 diabetic (db/db) and their corresponding wild-type mice were fed a control diet or a diet where carbohydrates were equicalorically replaced by D-beta-hydroxybutyrate-(R)-1,3 butanediol monoester (ketone ester [KE]). After 4 weeks, echocardiography demonstrated that a KE diet improved systolic and diastolic function in db/db mice. A KE diet increased expression of mitochondrial succinyl-CoA:3-oxoacid-CoA transferase and restored decreased expression of mitochondrial beta-hydroxybutyrate dehydrogenase, key enzymes in cardiac ketone metabolism. A KE diet significantly enhanced both basal and ADP-mediated oxygen consumption in cardiac mitochondria from both wild-type and db/db animals; however, it did not result in the increased mitochondrial respiratory control ratio. Additionally, db/db mice on a KE diet had increased resistance to oxidative and redox stress, with evidence of restoration of decreased expression of thioredoxin and glutathione peroxidase 4 and less permeability transition pore activity in mitochondria. Mitochondrial biogenesis, quality control, and elimination of dysfunctional mitochondria via mitophagy were significantly increased in cardiomyocytes from db/db mice on a KE diet. The increase in mitophagy was correlated with restoration of mitofusin 2 expression, which contributed to improved coupling between cytosolic E3 ubiquitin ligase translocation into mitochondria and microtubule-associated protein 1 light chain 3-mediated autophagosome formation. Conclusions Moderate elevation in circulating D-beta-hydroxybutyrate levels via KE supplementation enhances mitochondrial biogenesis, quality control, and oxygen consumption and increases resistance to oxidative/redox stress and mPTP opening, thus resulting in improvement of cardiac function in animals with type 2 diabetes mellitus.
更多
查看译文
关键词
cardiac function, roGFP2-GRX1, glutathione peroxidase 4, ketone bodies metabolism, ketone ester, mitochondrial permeability transition, mitofusin 2, roGFP2-ORP1, thioredoxin, type 2 diabetes mellitus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要