Amino acids and mechanistic target of rapamycin regulate the fate of live engulfed cells (vol 35, e21909, 2021)

FASEB JOURNAL(2022)

引用 2|浏览9
暂无评分
摘要
Metabolic stress contributes to the regulation of cell death in normal and diseased tissues. While different forms of cell death are known to be regulated by metabolic stress, how the cell engulfment and killing mechanism entosis is regulated is not well understood. Here we find that the death of entotic cells is regulated by the presence of amino acids and activity of the mechanistic target of rapamycin (mTOR). Amino acid withdrawal or mTOR inhibition induces apoptosis of engulfed cells and blocks entotic cell death that is associated with the lipidation of the autophagy protein microtubule-associated protein light chain 3 (LC3) to entotic vacuoles. Two other live cell engulfment programs, homotypic cell cannibalism (HoCC) and anti-CD47 antibody-mediated phagocytosis, known as phagoptosis, also undergo a similar vacuole maturation sequence involving LC3 lipidation and lysosome fusion, but only HoCC involves mTOR-dependent regulation of vacuole maturation and engulfed cell death similar to entosis. We further find that the regulation of cell death by mTOR is independent of autophagy activation and instead involves the 4E-BP1/2 proteins that are known regulators of mRNA translation. Depletion of 4E-BP1/2 proteins can restore the mTOR-regulated changes of entotic death and apoptosis rates of engulfed cells. These results identify amino acid signaling and the mTOR-4E-BP1/2 pathway as an upstream regulation mechanism for the fate of live engulfed cells formed by entosis and HoCC.
更多
查看译文
关键词
amino acids, cell death, entosis, metabolism, mTOR
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要