J-PLUS: Searching for very metal-poor star candidates using the SPEEM pipeline

ASTRONOMY & ASTROPHYSICS(2022)

引用 9|浏览51
暂无评分
摘要
Context. We explore the stellar content of the Javalambre Photometric Local Universe Survey (J-PLUS) Data Release 2 and show its potential for identifying low-metallicity stars using the Stellar Parameters Estimation based on Ensemble Methods (SPEEM) pipeline. Aims. SPEEM is a tool used to provide determinations of atmospheric parameters for stars and separate stellar sources from quasars based on the unique J-PLUS photometric system. The adoption of adequate selection criteria allows for the identification of metal-poor star candidates that are suitable for spectroscopic follow-up investigations. Methods. SPEEM consists of a series of machine-learning models that use a training sample observed by both J-PLUS and the SEGUE spectroscopic survey. The training sample has temperatures, T-eff, between 4800 K and 9000 K, values of log g between 1.0 and 4.5, as well as -3.1 < [Fe/H] < +0.5. The performance of the pipeline was tested with a sample of stars observed by the LAMOST survey within the same parameter range. Results. The average differences between the parameters of a sample of stars observed with SEGUE and J-PLUS, obtained with the SEGUE Stellar Parameter Pipeline and SPEEM, respectively, are Delta T-eff similar to 41 K, Delta log g similar to 0.11 dex, and Delta[Fe/H] similar to 0.09 dex. We define a sample of 177 stars that have been identified as new candidates with [Fe/H] < -2.5, with 11 of them having been observed with the ISIS spectrograph at the William Herschel Telescope. The spectroscopic analysis confirms that 64% of stars have [Fe/H] < -2.5, including one new star with [Fe/H] < -3.0. Conclusions. Using SPEEM in combination with the J-PLUS filter system has demonstrated their potential in estimating the stellar atmospheric parameters (T-eff, log g, and [Fe/H]). The spectroscopic validation of the candidates shows that SPEEM yields a success rate of 64% on the identification of very metal-poor star candidates with [Fe/H] < -2.5.
更多
查看译文
关键词
methods: data analysis, stars: fundamental parameters, stars: statistics, stars: general, stars: Population III
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要