Assessment of fitness and vector competence of a New Caledonia wMel Aedes aegypti strain before field-release

PLOS NEGLECTED TROPICAL DISEASES(2021)

引用 7|浏览10
暂无评分
摘要
BackgroundBiological control programs involving Wolbachia-infected Aedes aegypti are currently deployed in different epidemiological settings. New Caledonia (NC) is an ideal location for the implementation and evaluation of such a strategy as the only proven vector for dengue virus (DENV) is Ae. aegypti and dengue outbreaks frequency and severity are increasing. We report the generation of a NC Wolbachia-infected Ae. aegypti strain and the results of experiments to assess the vector competence and fitness of this strain for future implementation as a disease control strategy in Noumea, NC. Methods/principal findingsThe NC Wolbachia strain (NC-wMel) was obtained by backcrossing Australian AUS-wMel females with New Caledonian Wild-Type (NC-WT) males. Blocking of DENV, chikungunya (CHIKV), and Zika (ZIKV) viruses were evaluated via mosquito oral feeding experiments and intrathoracic DENV challenge. Significant reduction in infection rates were observed for NC-wMel Ae. aegypti compared to WT Ae. aegypti. No transmission was observed for NC-wMel Ae. aegypti. Maternal transmission, cytoplasmic incompatibility, fertility, fecundity, wing length, and insecticide resistance were also assessed in laboratory experiments. Ae. aegypti NC-wMel showed complete cytoplasmic incompatibility and a strong maternal transmission. Ae. aegypti NC-wMel fitness seemed to be reduced compared to NC-WT Ae. aegypti and AUS-wMel Ae. aegypti regarding fertility and fecundity. However further experiments are required to assess it accurately. Conclusions/significanceOur results demonstrated that the NC-wMel Ae. aegypti strain is a strong inhibitor of DENV, CHIKV, and ZIKV infection and prevents transmission of infectious viral particles in mosquito saliva. Furthermore, our NC-wMel Ae. aegypti strain induces reproductive cytoplasmic incompatibility with minimal apparent fitness costs and high maternal transmission, supporting field-releases in Noumea, NC. Author summaryDengue represents a risk for almost half of the world's population, especially throughout the tropics. In New Caledonia, dengue outbreaks have become more frequent in the past decade along with the recent circulation of chikungunya and Zika viruses. The opportunity to use the biocontrol method involving the release of Wolbachia-infected Ae. aegypti mosquitoes has been investigated as an alternative solution to the traditional control methods, like elimination of larval habitats and pyrethroid insecticide application to kill adults, which are becoming insufficient. A local strain of Ae. aegypti carrying Wolbachia (NC-wMel) has been generated and tested to evaluate its pathogen blocking capacity for the four dengue virus serotypes as well as chikungunya and Zika viruses. The fitness of NC-wMel strain has also been assessed to estimate its ability to compete with the wild-type strain in the field. Noumea city, where a third of the population of New Caledonia resides, has been chosen as the first site to implement the method in New Caledonia. As Ae. aegypti is the only proven vector in New Caledonia, we expect a significant impact on dengue outbreaks occurring in Noumea as soon as a high frequency of NC-wMel is established in the population.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要