Lanthanide Cerium(Iii) Tris(Pyrazolyl)Borate Complexes: Efficient Blue Emitters For Doublet Organic Light-Emitting Diodes

ACS APPLIED MATERIALS & INTERFACES(2021)

Cited 24|Views20
No score
Abstract
Organic light-emitting diodes (OLEDs) have had commercial success in displays and lighting. Compared to red and green OLEDs, blue OLEDs are still the bottleneck because the high-energy and long-lived triplet exciton in traditional blue OLEDs causes the short operational lifetime of the device. As a new type emitter, lanthanide complexes with a 5d-4f transition could have short excited-state lifetimes on the order of nanoseconds. To achieve a high-efficiency 5d-4f transition, we systematically tuned the steric and electronic effects of tripodal tris(pyrazolyl)borate ligands and drew a full picture of their Ce(III) complexes. Intriguingly, all of these complexes show bright blue emission with high photoluminescence quantum yields exceeding 95% and short decay lifetimes of 35-73 ns both in the solid powder and in dichloromethane solutions. Using the Ce(III) complex emitter, we show a blue OLED with a maximum external quantum efficiency of 14.1% and a maximum luminance of 33,160 cd m(-2), and the specific electroluminescence mechanism of direct exciton formation on the Ce(III) ion with a near-unity exciton utilization efficiency is also confirmed. The discovered photoluminescence and electroluminescence property-structure relationships may shed new light on the rational design of highly efficient lanthanide-based blue emitters and their optoelectronic devices such as OLEDs.
More
Translated text
Key words
tris(pyrazolyl)borate, lanthanide, photoluminescence, 5d-4f transition, organic light-emitting diode, electroluminescence, optoelectronic
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined